3-rx.comCustomer Support
3-rx.com
   
HomeAbout UsFAQContactHelp
News Center
Health Centers
Medical Encyclopedia
Drugs & Medications
Diseases & Conditions
Medical Symptoms
Med. Tests & Exams
Surgery & Procedures
Injuries & Wounds
Diet & Nutrition
Special Topics



\"$alt_text\"');"); } else { echo"\"$alt_text\""; } ?>


Join our Mailing List





Syndicate

You are here : 3-RX.com > Home > Infections -

Human body has a unique immune system response to foreign DNA

InfectionsJan 23, 06

The human body has a unique immune system response to foreign DNA, suggesting that DNA viruses and RNA viruses are detected by different mechanisms, Yale School of Medicine researchers report this week in Immunity.

The researchers also found that DNA recognition might be used to detect invasive bacteria in addition to viruses, according to Daniel Stetson, a post doctoral fellow in the Section of Immunobiology and lead author of the study.

Although there are countless types of viruses, they can all be placed in two categories based on the type of nucleic acids that comprise their genome: viruses made of RNA and viruses made of DNA. Infected cells sense the presence of foreign nucleic acids as viruses replicate inside them and distill the problem of recognizing a dizzying array of viruses into a relatively simple mechanism for turning on the immune response.

“It is well established that such a pathway exists for detection of viral RNA inside infected cells,” Stetson said. “In contrast, very little is known about whether cells can detect foreign intracellular DNA or how this system might function.”

Stetson and Ruslan Medshitov, professor of immunobiology, a Howard Hughes Institute investigator, and senior author of the study, compared the innate immune response to intracellular DNA with other virus recognition pathways.

“We found that this novel pathway seems to function differently from all other known nucleic acid sensors,” Stetson said. “The unique immune response activated by foreign DNA suggests that DNA viruses and RNA viruses are detected by different mechanisms.”

Stetson said one important question raised by these findings is how this newly described system avoids responding to genomic DNA that is contained within all cells.

“If this ‘tolerance’ to self DNA were to break down, cells might mount an antiviral response against their own DNA,” he said. “Further characterization of this pathway will shed light on the mechanisms of antiviral responses and how cells discern viral and self-DNA.”

http://info.med.yale.edu/ysm/



Print Version
Tell-a-Friend
comments powered by Disqus

RELATED ARTICLES:
  Many European countries ill-prepared to prevent and control the spread of viral hepatitis
  HPV vaccination not associated with increase in sexually transmitted infections
  Hepatitis C more prevalent than HIV/AIDS or Ebola yet lacks equal attention
  To curb hepatitis C, test and treat inmates
  Vinegar kills tuberculosis and other mycobacteria
  New strategy emerges for fighting drug-resistant malaria
  Toys, books, cribs harbor bacteria for long periods, study finds
  California high school to test students for tuberculosis
  TB Vaccine May Work Against Multiple Sclerosis
  Tuberculosis: Nature has a double-duty antibiotic up her sleeve
  Treatment target identified for a public health risk parasite
  Nearly half of U.S. children late receiving vaccines

 












Home | About Us | FAQ | Contact | Advertising Policy | Privacy Policy | Bookmark Site