3-rx.comCustomer Support
HomeAbout UsFAQContactHelp
News Center
Health Centers
Medical Encyclopedia
Drugs & Medications
Diseases & Conditions
Medical Symptoms
Med. Tests & Exams
Surgery & Procedures
Injuries & Wounds
Diet & Nutrition
Special Topics

\"$alt_text\"');"); } else { echo"\"$alt_text\""; } ?>

Join our Mailing List


You are here : 3-RX.com > Home > Headaches - Public Health -

Radioactive medicine without the nuclear headache

Headaches • • Public HealthJun 17, 12

A made-in-Canada solution to our medical-isotope problem could come from a machine with a name that could have been pulled straight from the pages of a science fiction novel: the cyclotron.

“It was really pooh-poohed, this idea of using cyclotrons; they said there was no way we could produce enough in a commercially meaningful way,” says John Wilson, the cyclotron facilities manager at the University of Alberta’s Cross Cancer Institute.

In mid-2010, scientists at the University of Sherbrooke and the University of Alberta made technetium-99m, the most commonly used medical isotope, without a nuclear reactor. Last fall, the Alberta scientists began putting the cyclotron-produced technetium-99m through its paces, testing it in animals and humans, and found that the medical scans looked the same as those done using the regular stuff.

Now they’re looking to make more of it using more powerful machines, to prove that a cross-country cyclotron network could meet most of Canada’s medical isotope needs. Success could lift the country from its dependency on the aging reactor at the Chalk River Laboratories near Ottawa.

Last week, the University of Sherbrooke received a higher-current cyclotron from Advanced Cyclotron Systems Inc., a company based in Richmond, B.C. The University of Alberta will install the same model in an old curling club on its south campus by the end of March.

“Cyclotrons are a novel and very exciting way of producing technetium-99m,” says Kevin Tracey, vice-president of the Ontario Association of Nuclear Medicine and the medical director of nuclear medicine at Ho^tel-Dieu Grace Hospital in Windsor.

“There remain some technical impediments to making it efficient in day-to-day operations, but if we can produce it close to home, in our communities, that is a much better solution,” he says.

Technetium-99m is the most common medical isotope used in the practice of nuclear medicine. About 80 per cent of all medical radioisotope tests—from cardiac perfusion tests to bone scans for cancer—require technetium-99m. In Canada, it’s used in roughly 1.8 million procedures annually.

But there’s almost no natural technetium-99m on Earth. Instead it is produced via a precursor called molybdenum-99 that must be made in a nuclear reactor from highly enriched uranium.

Molybdenum-99, or “moly-99”, is an unstable isotope without much use in nuclear medicine. But it does decay into the sought-after technetium-99m, so under current technology, it is extracted from a nuclear reactor, purified and shipped out to hospitals in lead containers called generators. The short half-lives of moly-99 (66 hours) and technetium-99m (6 hours) mean that neither isotope can be stockpiled.

About 40 per cent of the global supply of moly-99 comes from the aging Chalk River reactor. In 2007, an unexpectedly long reactor shutdown caused a technetium-99m shortage around the world. It happened again two years later. Although the reactor is back online today, its operating license will expire in 2016.

Ottawa has invested some $35-million to encourage research to produce an alternative source, including the projects at Sherbrooke and Alberta.

“We have to find a way to continue to produce technetium-99m for Canadians and, ultimately, the international environment,” says Sandy McEwan, chair of the oncology department at the University of Alberta.

The cyclotron is a large electromagnet that looks a little like an Oreo cookie. But instead of chocolate biscuits, the cyclotron has electromagnets, and in the place of a sweet filling, there are electrodes that accelerate a stream of charged particles to extreme speeds in a continuous spiral.

The process of transforming moly-100 into technetium-99m begins by setting up a quarter-sized disc of moly-100 as the target. Hydrogen atoms sporting an extra electron stream into the core of the cyclotron where they start to circle, alternatively attracted and repelled by the forces created by the electromagnets.

Page 1 of 21 2 Next »

Print Version
comments powered by Disqus

  Sex and violence may not really sell products
  GPs and the Fit for Work scheme
  Study shows global warming is unlikely to reduce winter deaths
  Academies make recommendations for improving public health
  As death rates drop, nonfatal diseases and injuries take a bigger toll on health globally
  Designing better medical implants
  Single low-magnitude electric pulse successfully fights inflammation
  Total annual hospital costs could be reduced by rapid candidemia identification
  UTMB develops new online tool for nurses
  Online health information - keep it simple!
  Your privacy online: Health information at serious risk of abuse
  Physician guidelines for Googling patients need revisions


Home | About Us | FAQ | Contact | Advertising Policy | Privacy Policy | Bookmark Site